SYLOW INTERSECTIONS, DOUBLE COSETS, AND 2-BLOCKS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sylow Intersections and Fusion

It is common in mathematics for a subject to have its local and global aspects; such is the case in group theory. For example, the structure and embedding of subgroups of a group G may be usefully thought of as part of the local structure of G while the normal subgroups, quotient groups and conjugacy classes are relevant to the global structure of G. Furthermore, the connections between local a...

متن کامل

Principal 2-Blocks and Sylow 2-Subgroups

Let G be a finite group with Sylow 2-subgroup P 6 G. Navarro–Tiep–Vallejo have conjectured that the principal 2-block of NG(P) contains exactly one irreducible Brauer character if and only if all odd-degree ordinary irreducible characters in the principal 2-block of G are fixed by a certain Galois automorphism σ. By recent work of Navarro–Vallejo it suffices to show this conjecture holds for al...

متن کامل

Enumeration of Double Cosets

Let H and K be subgroups of a group G. The double cosets of H and K in G are the sets HgK, g E G. In this paper we describe a procedure, P, for determining the cardinality of the set H\G/K of double cosets of H and K in G given a finite presentation for G and finite sets of generators for H and K. It is well known that the problem of determining whether or not a group G defined by a finite pres...

متن کامل

Automorphisms of principal blocks stabilizing Sylow subgroups

Let p be a prime,G a finite group which has a normal p-subgroup containing its own centralizer inG, and R a commutative local ring with residue class field of characteristic p. In this paper, it is shown that if α is an augmented automorphism of RG which fixes a Sylow p-subgroup P of G, there is ρ ∈ Aut(G) such that xαρ = x for all x ∈ P , and αρ is an inner automorphism of RG.

متن کامل

A Remark on Double Cosets

If a soluble group G contains two finitely generated abelian subgroups A, B such that the number of double cosets AgB is finite, then G is shown to be virtually polycyclic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2001

ISSN: 0092-7872,1532-4125

DOI: 10.1081/agb-100105043